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In this paper, we introduce subcentral ideals in the class of cancellative positive
partial abelian monoids (CPAMSs). Every complementary pair of subcentral ideals
inaCPAM % correspondsto asubdirect decomposition of 9. If thisdecomposition
is direct, the corresponding ideals are called central. Subcentral ideals are
characterized as central elements in the lattice of the recently introduced so-
called Ry-ideals. Every subcentral ideal is a central element in the lattice of all
ideals. A subcentral ideal | is central iff | is Riesz ided. In an upper-directed
CPAM, every subcentral ideal is central.

1. INTRODUCTION

A cancellative positive partial abelian monoid (CPAM) isan associative,
commutative partial groupoid with aneutral element 0 in which the cancella-
tive law holds and O is the smallest element in the partial order induced by
the binary operation.

The study of partial abelian semigroups started in ref. 11, with further
development in refs. 10, 6, and 1. There is a hierarchy of CPAMs:. effect
algebras, MV-algebras, orthomodular lattices are CPAMSs, as well as various
types of subalgebras (in particular, ideals) of these structures.

In the present paper, we introduce subcentral ideals in the class of
CPAMSs. Anided | is called subcentral iff every element can be decomposed
in a unique way into | and some other fixed ideal |’, which is caled a
complement of 1.

First, we investigate basic properties of subcentral ideals. We show that
every subcentral ideal has a unique complement and that for every subcentral
ideal | ina CPAM P, there is an idempotent full homomorphism, which maps
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% onto |I. Then we prove a one-to-one correspondence between pairs (I,
I") of subcentral ideals and certain subdirect decompositions of . If the
corresponding decomposition is direct, we say (in accordance with ref. 5)
that | is central.

Then we study subcentral ideals in the context of ideal types introduced
in refs. 1 and 6. We prove that subcentral ideals are exactly the centra
elements in the lattice of R;-ideals. A subcentral ideal | is centra iff | isa
Riesz ideal. This implies that in the class of upper-directed CPAMs, every
subcentral ideal is central. This means that “subcentral ideal” and “central
ideal” are two possible generalizations of the notion “central ideal of an
effect algebra’ for the class of CPAMSs.

2. DEFINITIONS

Definition 1. Let » = (P, &, 0) be a partial agebra with a nullary
operation 0 and a binary partial operation €. Denote the domain of & by
1. P iscdled a partial abelian monoid (PAM) iff for al a, b, c € P the
following conditions are satisfied:

(P1) albimpliesb 1l aa®b=b®a

(P2) blLcanda L b®cimpliesal b,a®bblcad(bDc)
=(@a® b dc

(P3) alOanda®0=a

A partial abelian monoid is called a cancellative positive PAM (CPAM) iff
the following conditions are satisfied.

(P4 a®b=ad®cimpliesb = c.
(P5) a® b= 0impliesa = 0.

InaCPAM %, wedenotea < biffa® c = bforsomec € P We
denotec = a© biff a= b® c. It iseasy to prove that © is a well-defined
partial operation. A CPAM & is called upper-directed iff for every a,b € P,
there exists ¢ € P, such that a = ¢ and b = c. Effect algebra [23] is an
upper-bounded CPAM. The greatest element in an effect algebra is denoted
by 1. In ref. 8 a class of partia algebras named D-posets was introduced.
D-posets are essentially equivaent to effect algebras, but they are defined
with © as a primary operation. A class of structures equivalent to CPAMs
but based on © was introduced in ref. 7—abelian RI-posets.

Definition 2[ 10, 6]. Let % beaPAM. Let ~ be arelation on P such that:

(C1) ~ isan equivaence relation.
(CZ) a.l -~ a.2, bl -~ b2, a.l 1 bl! a2 1L b2 |mp|y a.l @ b]_ -~ a.2 @ b2.
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Then ~ is called a weak congruence of %. If, in addition,

(C3) a~b,a L cimply thereisc, ~ ¢, suchthat b 1 ¢, then ~ is
called a congruence of %. If, in addition,

(C4H) albalb,ag~aaDb ~adbimply by ~ b, then
~ is called a c-congruence.

In ref. 10 it was proven that for a congruence ~ on a PAM @, the
quotient P/~ is a PAM. The following condition was considered in ref. 1.

(C5 a~bdciff (g, aywitha; ~b,a,~c,anda=a, ® a,

If ~ isareation of a PAM P satisfying (C1), (C2), and (C5), then the
quotient is a PAM [1].

Definition 3. An order ideal of a CPAM is a nonempty subset | of P
having the property: If x @ y e I, then x, y e I. If, in addition, x L vV, X,
ye |, impliesx@® yinl, then | is called an ideal of P.

We denote the system of al ideals of a CPAM & by I(P). (I(P), Q) is
a complete lattice with smallest element {0} and greatest element P. The
meet of two arbitrary ideals is their intersection. The join has more com-
plex structure.

Having an ideal | of a CPAM %, the relation ~, on P is defined as
follows. a ~, biff therearea;, b, e | suchthata;, = a, by <b, (@G a) =
(b © by). We say that an ideal | is weakly algebraic iff ~, satisfies the (C1)
and (C2) properties.

For a weakly algebraic ideal | we denote P/~ briefly by P/l and the
equivalence class of a under ~, by [a],.

Definition 4 [4]. Let % = (P, &, 0) beaCPAM, and let AC P, 0
A. Define @, on A as follows. a @, b is defined and equals c if and only if
a®b=cin® andc e A Then (A, ©,, 0) is called arelative subalgebra
of %.

The following example shows that there are relative subalgebras of
CPAMs which are not CPAMSs.

Example 1. It istrivial that the set (0, ) of nonnegative real numbers,
equipped with the usual + operation, isa CPAM. Let A = {0, 1/4, 1/2, 1}.
Then the relative subalgebra of (0, o) associated with A fails to satisfy the
(P2) condition: ¢ + 1) + L exists, but + £ 1.

Proposition 1. Let % be a CPAM. Let A be an order ideal in &. Then
the relative subalgebra associated with A is a CPAM.
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Proof. Obvioudly, the conditions (P1), (P3), (P4), (P5) hold. Assume
blac,alab®ac. Thena® (b c) e A whichimpliesa® b e A,
i.e,alab.Snce(a®b)®c=ad(bdc) e Aweseethatad®b LyCc. =

Definition 5[10]. Let %, and P, be CPAMSs. Let ¢ : P, — P, be such that

(H1) x L yimpliesthat &(X) L d(y) and d(x D y) = $(X) © H(y).
Then ¢ is called a homomorphism of CPAMSs. If, in addition,

(H2)  &(x) L &(y) and () D d(y) e &(Py) imply that there are x,,
y1 € Pysuch that &(x)) = &(x), d(y) = d(y) and xq Ly,

then ¢ is called a full homomor phism, of CPAMSs. A bijective full homomor-
phism is called an isomorphism.

3. SUBCENTRAL IDEALS AND RELATIVE SUBDIRECT
PRODUCTS

In this section, we introduce anew class of subcentral ideals of aCPAM.
We examine some of the basic properties of subcentral ideals and characterize
subdirect decompositions of a CPAM associated with complementary pairs
of subcentral ideals.

Definition 6. We say that an ideal |1 of a CPAM (P, &, 0) is subcentral
if and only if there is an ideal J such that for every x € P there is a unique
decomposition x = x; D X, with x; € I, X, € J. If | is subcentral ideal, then
Jis called the complement of I.

Clearly, if J is a complement of I, then J is subcentral and | is a
complement of J. We denote the set of all subcentral ideals of a CPAM %
by SCI(P).

Proposition 2. Every subcentral ideal has a unique complement.

Proof. Let | be a subcentral ideal. Let J and K be complements of 1.
Let x € J. There is a unique pair of elements x;, X« such that X = x & x,
where x, € | and x« € K. Similarly, there is a unique pair xk, Xk such that
Xk = Xk @ xg and xk € I, x§ € J. Observe that xi e K. It follows that
X = (X @ xk) @ xi is a decomposition of x into | and its complement J.
Since J is a complement of |, this decomposition is unique. Evidently,
X @ xk = 0,becausex=0®x,0 € I, x e J. Thusx = x} € K.Analogously,
X e Kimpliesx e J. =

The above proposition allows us to define a bijective unary operation
" on SCI(P) such that for | € SCI(P), |' is a complement of |. Note that
|” =1 and that P, {0} e SCI(P). Moreover, with every | € SCI(P) we can
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associate a unique mapping , : P ~ | having the property m(X) @ m(X) =
X, where m,(X) e | and m/(X) e |'. Evidently, X e | iff m(X) = x iff 7 (X)
= 0.

Proposition 3. Let | be a subcentral ideal in a CPAM %:

(@ m: P~ | isasurjective, full homomorphism.

(b) Oa, b e P: a~ biff m(a) = m(b). Consequently, ~, is a
weak congruence.

(c) P/l isisomorphictol’.

(d) For every a € P, m(a) is the greatest element of the set {i e I: i
= a}.

Proof. (@) m, is surjective, because for arbitrary x € I, m(X) = X. Let
X, ¥ € P,x Ly We have

X@y=mxDy) S m(xDy) 1)
x@y=m() D m(x) D m(y) D m(y)
= (m() & m(y)) & (m(x) & m(y)) (2)

Both (1) and (2) are decompositions of x @ y into | and 1’'. Since | is
subcentral, the decomposition of x @ yinto | and |’ is unique. Thus, m (X ®
y) = m(X) & m(y).

Let m (X) L  (y). In order to prove (H2), it suffices to put x, = (),
y1 = m(y).

(b) Assumea ~, b. Thentherearea;, b, e | sichthata© a; = b S
bl- This Implles b= (a © al) 5> bla '1T|'(b) = 7T|'((a © al) S bl) = ’1T|'(a ©
a,). Similarly m.(a) = (b © by).

Assume m(a) = m(b). Put a; = m (@), by = m(b). Then (a © a;) =
mp(8) = m(b) = (b S by).

Evidently, the above implies that ~, satisfies (C1). The (C2) condition
follows from the fact that ;. is a homomorphism.

(c) By part (b), a ~, biff m(a) = m(b). Let b: P/l » |’ be a map
defined by ¢([a];) = m(a). Evidently, ¢ is well defined and bijective. Let
[a], L [b];. Then, there are &, ~, a and b, ~, b such that a, L b,;. This
implies that

o([a]) = m(a) = m(ar) L m(by) = m:(b) = d([b]))
Moreover,
o([a]; © [b]) = d([ay © ba])) = m(as D by)
= m(ay) © mp(by) = m(a) D m(b)
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= é([a])) D ([b])

Let &([a) L &([b]). That means, m(a) L m(b). Since . is full,
there are a;, b; € P such that () = m(a), m(b,) = m(b), and a; L b,.
Thus, ¢ satisfies the (H2) condition.

(d) Assumei € I,i = a. Thereisb € Psuchthata =i ® b. By part (a),

m(@) = m (@) & m () =i D m(b)
Therefore, i = m(a). m

Definition 7. An ideal | € SCI(P) is called central iff a e I, b e I’

impliesa L b.

As we will prove, the above definition of central ideal is equivaent to
the definition given in ref. 5 for the class of effect algebras. Not every
subcentral ideal is central, as the following example shows.

Example 2. Consider a finite CPAM given by the following table:

@0 a b c d e
0|0 a b c d e
ala - d
b|b d - e
clc - e
e le

In this CPAM, the subcentral ideals are

I, = {0} I1=P

I, ={0, a} 12 ={0,Db,c, ¢}
I3 = {0, c} 3= {0, a b, d}
I, = {0, b} I,=1{0,a c}
It is easy to see that only |4, 11, 14, and |, are central.

Example 3. Let N be aset of positive integers equipped with the multipli-
cation. Obvioudly, N = (N, ..., 1) isa CPAM. Since the operation on N is
total, every subcentral ideal is central. There are nontrivial subcentral ideals
in N. For example, {2":n € N U {0}} isasubcentral ideal with complement
{2n+ 1. n e NU {0}}.

Definition 8. Let 2, P, be CPAMs. Let P be a set having the follow-
ing properties:
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(S1) P C Py X P

(S2) Pisan orderidea of %, X P,.
(S3) Oxy € Py X € Pai (X, %) € P.
(84) DXZ S Pz: D(l € Pl: (Xl, X2) e P.

Then the relative subalgebra of %, X P, associated with P is called arelative
subdirect product of P4, P..

It follows from Proposition 1 that arelative subdirect product of CPAMs
isa CPAM.

The following two propositions establish a one-to-one correspondence
between (sub)central ideals and (relative sub)direct decompositions of a
CPAM. In particular, this shows that for % an effect algebra, our definition
of central ideal of % is equivalent with the definition given in ref. 5.

Proposition 4. Let % be arelative subdirect product of %, and %,. Then
I = {(X4, 0): X; € Py} isasubcentral ideal of % and J = {(0, %5): X, € P,}
is the complement of 1. Moreover, # = P, X P, implies | is central.

Proof. First of al, let us prove |, J C P. Let (x4, 0) e I. By (S3), there
iISX e P, such that (xq, Xo) € P. Now, (X3, %) = (X3, 0) @ (0, %) in P, X
P,. It follows that (x5, 0) € P, since P is an order idea of ; X %,. One
can prove J C P in asimilar way.

It is easy to check that both | and J are ideals of P. It remains to prove
that | is subcentral ideal.

Let (X, %) € P. Then (Xq, X)) = (X1, 0) ©p (0, X,), where (x;, 0) e |
and (0, x;) € J. This decomposition is unique. Indeed, let (X1, %) = (Y1, V)
D (z1, 22), (Y1, ¥2) € |, (z1, 2) € J. Clearly, y, = 3 = 0. Now, (X, X) =
(y1, 0) ®r (O, 2), which implies x; = y; and X, = 2.

Suppose P = P, X P,. Obvioudly, for al X, € Py and x, € Py, (X1, 0)
1 (0, Xp) holds. Thus | iscentral. m

Proposition 5. Let | be a subcentral ideal of a CPAM %. Then P is
isomorphic to arelative subdirect product of | and | . Moreover, if | iscentral,
then P isisomorphicto | X |,

Proof. We denote Q = | X |” and @©q the operation on Q. Let A =
{(X5, X): X1 € I, % e I", Xy L X}, and let S = (A, Da, 0) be arelative
subalgebra of Q associated with A.

(S1) holds by definition of A. For a proof of (S2), let (X, X)) € A, (a1,
Y2) =q (X1, X2). Evidently, y; =p x; and y, =p X,. Thus, x; L X, impliesy; L
Vo, 1.6, (Y1, Yo) € A. Sincex; e | implies (x4, 0) € A, (S3) holds. The proof
of ($4) is similar. Thus, o is a relative subdirect product of | and ', It
remains to prove that & is isomorphic to %.
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Let ¢: P— A be defined by o(x) = ((X), m(x)). We will prove that
¢ is an isomorphism. For a proof of injectivity, assume ¢(X) = ¢(y). That
means (1, (X), (X)) = (m(y), m(y)). It follows that x = (X) D m(X) =
 (y) © m(y) = y. To prove surjectivity, observe that for (X3, Xo) € A, ¢(X; D
Xo) = (Xq, Xo). (H1) follows from the fact that 1 and 7. are homomorphisms.

Let o(¥) = (m (X, (X)) La @(y) = (m(y), m(¥)). Since ¢(x), ¢(y)
are orthogonal in «, their sum must be an element of A: (m, (X) D (),
w(X) D m(y)) € A Therefore, (m(X) D m(y)) Lp (m(X) D m(y)), which
implies x = m(x) @ m(x) Lp m(y) D m(y) =V.

Suppose | is central. Then A = Q. The rest is obvious. =

4. SUBCENTRAL IDEALSIN SOME IDEAL LATTICES

In this section, we investigate the role of subcentral ideals in the lattice
of Ry-ideals, recently introduced in ref. 1. We prove that (SCI(P), C) is a
Boolean lattice which is the center of the lattice of R;-ideals. Moreover, every
subcentral ideal isacentral element of thelatticel(P) of al ideals. A subcentral
ideal is central iff it is a Riesz ideal.

Definition 9. Let  be a CPAM, | € I(P). | iscaled a Ry-ideal iff for
everyi e landa,b e Psuchthata 1L b,i = a® b, thereareiy, i, € |
suchthati; =a, i, =b, i =i; @ i,. AnR;ided | iscaled a Riesz ideal iff
foreveryi e l,a,be Pi=<aandaSi L bthereexistsj e | such that
j=bandal boj.

We denote R; I(P) the set of all Ry-ideals of a CPAM 2. The following
proposition summarizes some of the results from ref. 1.

Proposition 6. Let  be a CPAM.

@ LealeRIP),JelP).lOJ=1®I={iDj:ieljel,
i Lj}.

(b) Ryl(P) is a complete distributive sublattice of I(P).

() If (P, =) is upper-directed, then every R;-ideal is a Riesz ideal.

(d) If I isan Ry-ideal, then ~, satisfies (C1), (C2), and (C5). Conse-
quently, P/l is a PAM.

Recall that for a bounded lattice L, an element z € L is cdled central
iff thereisaz e L such that L isisomorphic to [0, Z] X [0, Z']. The set of
al central elements of alattice L [denoted by C(L)] forms aBoolean sublattice
of L.

Proposition 7. Let % be a CPAM. Then SCI(P) = C(R.(P)).

Proof. Let | € SCI(P),i e |,i =a® b. Then m (i) = m (a) ® m (b),
m(@) = a, m(b) = b, showing that | € Ryl(P).
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By ref. 9, Theorem 4.13, an element of a distributive lattice is central
iff it has a complement. For | € SCI(P), | OI' =1& ' =Pand1 01" =
{0}. Therefore, SCI(P) C C(RyI(P)).

For the opposite direction, let | € C(R.I(P)). Then | has a complement
I'i.e,P=1&1’, 101" = {0}. Evidently, every x e P has adecomposition
X=x®x,x €l,x | It remains to prove that this decomposition
is unique.

Letusdenotep (X) = {x, % € |, % =X, Xx© x € |'}. A decomposition
of xinto | and |’ exists; therefore p,(x) is not empty. Let i € p(a @ b).
Theni = a® bandsincel isan Ry-idedl, there areiq, i, € | such that i =
i1@i,ii=ai,=bi=i, @i, Denotec= (i, P i) ©i,a, = aO iy,
b =bO i, Notethatce landa® b=i,Sa, Pi,®b, =iDcD
a; D by. The later equation implies(a® b) © i = c® a; @ by e |’ because
i e p(@adb).ltfollows,cel NI’ ={0},a €l’,b; el’.Thus,i; €
Pi(@), iz € pi(b), i =i, D iz p(@a®b) C pi(a) D pi(b)

Nowletx=x D x,x € L, x l'.p(X) C p(x) D p (X)) Observe
that p(x) C 1 N 1" = {0} and p(x) = {x}. This, together with p,(x) #
0, implies p;(X) = {x}. Similarly, p|’(X) = {x'}. The decomposition of x
intol, I’ existsand isunique, | € SCI(P). =

Corallary 1. SCI(P) is a Boolean sublattice of 1(P).

Proposition 8. Let I, J € SCI(P), x € P.

@ mp®) = my(m (X))

(0) mm(®) = m3(m (X)) D m((X)

Proof. (a) (1 OJ) = 1" 0OJ’, since CI(P) is a Boolean algebra. Now,
X =mX) D m () = m(m X)) D 7y(m (X)) D m(X) is a decomposition
of xintol 0J s my(m (X)) and 1’ 0J" > my(m (X)) @ m(X). Thisimplies
mp(X) = m (m;5(x).

(b) Similarly. m

Corollary 2. Let I, J € SCI(P). Then o w3 = 1y .

Proof. Let x € P. Then 7T|(1TJ(X)) = 7T|DJ(X) = T30 (X) = ’TI'J(TI'| (X)) |

Proposition 9. Let % be a CPAM. Then SCI(P) C C(I(P)).

Proof. Let J e I(P), | € SCI(P). According to ref. 9, Theorem 4.13, it
is sufficient to prove
J=@O0N0EoOMm=Q@onoauaolty
@O J=@Oo0noEor.

By Proposition 3 of ref. 1, I, 1" € RyI(P) impliesthat (3 O 1) O
@Gom=3ouolry=.J.
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2 J=@onoEol.
JC @@OnoEoal)istrivia. By ref. 1, Proposition 2,1 € R,
I(P) and K € I(P) implies| OK = | & K. Consequently,

@ONoEOM=@enoEel’)
Letae (JB1)DUJDI'). Wehavea € JD | and so there are
jedandi e |l suchthata = j & i. Then
m(@) = m(j) & m (i) =m(j))®0=jel
so m(a) = m(j) € J. Similarly,a € J® I’ implies m(a) € J.
Sincem(@ e Jandm(a) e J,a=m@ Dm (@ €J m
The following proposition gives a characterization of central ideals.

Proposition 10. Let % be a CPAM, let | € SCI(P). | is central iff | is
a Riesz ideal.

Proof. Let | be a Riesz, subcentral ideal. Let a € I, b e |’. Consider
the definition of a Riesz ideal. Puti = a. Evidentlyi =aanda©i =0 1
b. This implies that thereisj € I,j = b, suchtha bS | L a Now, | =
be |’ impliesthatj e I'. Consequently,j e | O1' = {Q}. Therefore j =
Oandb©j=Db1a

The opposite implication follows from Example 7 in ref. 6, using the
results of the previous section. However, we present a direct proof here.

Let | beacentral ided. Assumea=i € 1,a©i L b. Sincel iscentral,
m@ L m((@aoi) D b). We have

m@ D m(@aci)db) =m@Dm@Si) D m (b
=m (@) & (m(a) © m(i)) © m(b)
=m (@) ® m(a) D mw(b) = a® m(b)
Thus,a L m(b) = bS m(b) and, puttingj = m,(b), weseethata L bO|. =

Corollary 3. Let % be an upper-directed CPAM (in particular, an effect
algebra). Then every subcentral ideal is central.

Proof. By ref. 1, Proposition 9, in an upper-directed CPAM every R;-
ideal isRiesz. =
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