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Subcentral Ideals in Generalized Effect Algebras†
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In this paper, we introduce subcentral ideals in the class of cancellative positive
partial abelian monoids (CPAMs). Every complementary pair of subcentral ideals
in a CPAM 3 corresponds to a subdirect decomposition of 3. If this decomposition
is direct, the corresponding ideals are called central. Subcentral ideals are
characterized as central elements in the lattice of the recently introduced so-
called R1-ideals. Every subcentral ideal is a central element in the lattice of all
ideals. A subcentral ideal I is central iff I is Riesz ideal. In an upper-directed
CPAM, every subcentral ideal is central.

1. INTRODUCTION

A cancellative positive partial abelian monoid (CPAM) is an associative,
commutative partial groupoid with a neutral element 0 in which the cancella-
tive law holds and 0 is the smallest element in the partial order induced by
the binary operation.

The study of partial abelian semigroups started in ref. 11, with further
development in refs. 10, 6, and 1. There is a hierarchy of CPAMs: effect
algebras, MV-algebras, orthomodular lattices are CPAMs, as well as various
types of subalgebras (in particular, ideals) of these structures.

In the present paper, we introduce subcentral ideals in the class of
CPAMs. An ideal I is called subcentral iff every element can be decomposed
in a unique way into I and some other fixed ideal I 8, which is called a
complement of I.

First, we investigate basic properties of subcentral ideals. We show that
every subcentral ideal has a unique complement and that for every subcentral
ideal I in a CPAM P, there is an idempotent full homomorphism, which maps
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3 onto I. Then we prove a one-to-one correspondence between pairs (I,
I 8) of subcentral ideals and certain subdirect decompositions of 3. If the
corresponding decomposition is direct, we say (in accordance with ref. 5)
that I is central.

Then we study subcentral ideals in the context of ideal types introduced
in refs. 1 and 6. We prove that subcentral ideals are exactly the central
elements in the lattice of R1-ideals. A subcentral ideal I is central iff I is a
Riesz ideal. This implies that in the class of upper-directed CPAMs, every
subcentral ideal is central. This means that “subcentral ideal” and “central
ideal” are two possible generalizations of the notion “central ideal of an
effect algebra” for the class of CPAMs.

2. DEFINITIONS

Definition 1. Let 3 5 (P, %, 0) be a partial algebra with a nullary
operation 0 and a binary partial operation %. Denote the domain of % by
'. 3 is called a partial abelian monoid (PAM) iff for all a, b, c P P the
following conditions are satisfied:

(P1) a ' b implies b ' a, a % b 5 b % a.
(P2) b ' c and a ' b % c implies a ' b, a % b ' c, a % (b % c)

5 (a % b) % c.
(P3) a ' 0 and a % 0 5 a.

A partial abelian monoid is called a cancellative positive PAM (CPAM ) iff
the following conditions are satisfied.

(P4) a % b 5 a % c implies b 5 c.
(P5) a % b 5 0 implies a 5 0.

In a CPAM 3, we denote a # b iff a % c 5 b for some c P P. We
denote c 5 a * b iff a 5 b % c. It is easy to prove that * is a well-defined
partial operation. A CPAM 3 is called upper-directed iff for every a,b P P,
there exists c P P, such that a # c and b # c. Effect algebra [23] is an
upper-bounded CPAM. The greatest element in an effect algebra is denoted
by 1. In ref. 8 a class of partial algebras named D-posets was introduced.
D-posets are essentially equivalent to effect algebras, but they are defined
with * as a primary operation. A class of structures equivalent to CPAMs
but based on * was introduced in ref. 7—abelian RI-posets.

Definition 2[10, 6]. Let 3 be a PAM. Let , be a relation on P such that:

(C1) , is an equivalence relation.
(C2) a1 , a2, b1 , b2, a1 ' b1, a2 ' b2 imply a1 % b1 , a2 % b2.
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Then , is called a weak congruence of 3. If, in addition,

(C3) a , b, a ' c imply there is c1 , c, such that b ' c1 then , is
called a congruence of 3. If, in addition,

(C4) a ' b, a1 ' b1, a1 , a, a1 % b1 , a % b imply b1 , b, then
, is called a c-congruence.

In ref. 10 it was proven that for a congruence , on a PAM 3, the
quotient P/, is a PAM. The following condition was considered in ref. 1:

(C5) a , b % c iff ∃a1, a2 with a1 , b, a2 , c, and a 5 a1 % a2

If , is a relation of a PAM P satisfying (C1), (C2), and (C5), then the
quotient is a PAM [1].

Definition 3. An order ideal of a CPAM is a nonempty subset I of P
having the property: If x % y P I, then x, y P I. If, in addition, x ' y, x,
y P I, implies x % y in I, then I is called an ideal of P.

We denote the system of all ideals of a CPAM 3 by I(P). (I(P), #) is
a complete lattice with smallest element {0} and greatest element P. The
meet of two arbitrary ideals is their intersection. The join has more com-
plex structure.

Having an ideal I of a CPAM 3, the relation ,I on P is defined as
follows: a ,I b iff there are a1, b1 P I such that a1 # a, b1 # b, (a * a1) 5
(b * b1). We say that an ideal I is weakly algebraic iff ,I satisfies the (C1)
and (C2) properties.

For a weakly algebraic ideal I we denote P/,I briefly by P/I and the
equivalence class of a under ,I by [a]I.

Definition 4 [4]. Let 3 5 (P, %, 0) be a CPAM, and let A # P, 0 P
A. Define %A on A as follows. a %A b is defined and equals c if and only if
a % b 5 c in 3 and c P A. Then (A, %A , 0) is called a relative subalgebra
of 3.

The following example shows that there are relative subalgebras of
CPAMs which are not CPAMs.

Example 1. It is trivial that the set ^0, `) of nonnegative real numbers,
equipped with the usual 1 operation, is a CPAM. Let A 5 {0, 1/4, 1/2, 1}.
Then the relative subalgebra of ^0, `) associated with A fails to satisfy the
(P2) condition: (1–4 1 1–4 ) 1 1–2 exists, but 1–4 '⁄ 1–2 .

Proposition 1. Let 3 be a CPAM. Let A be an order ideal in 3. Then
the relative subalgebra associated with A is a CPAM.
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Proof. Obviously, the conditions (P1), (P3), (P4), (P5) hold. Assume
b 'A c, a 'A b %A c. Then a % (b % c) P A, which implies a % b P A,
i.e., a 'A b. Since (a % b) % c 5a % (b % c) P A, we see that a % b 'A c. n

Definition 5 [10]. Let 31 and 32 be CPAMs. Let f : P1 ° P2 be such that

(H1) x ' y implies that f(x) ' f( y) and f(x % y) 5 f(x) % f( y).

Then f is called a homomorphism of CPAMs. If, in addition,

(H2) f(x) ' f( y) and f(x) % f( y) P f(P1) imply that there are x1,
y1 P P1 such that f(x1) 5 f(x), f( y1) 5 f( y) and x1 ' y1

then f is called a full homomorphism, of CPAMs. A bijective full homomor-
phism is called an isomorphism.

3. SUBCENTRAL IDEALS AND RELATIVE SUBDIRECT
PRODUCTS

In this section, we introduce a new class of subcentral ideals of a CPAM.
We examine some of the basic properties of subcentral ideals and characterize
subdirect decompositions of a CPAM associated with complementary pairs
of subcentral ideals.

Definition 6. We say that an ideal I of a CPAM (P, %, 0) is subcentral
if and only if there is an ideal J such that for every x P P there is a unique
decomposition x 5 x1 % x2 with x1 P I, x2 P J. If I is subcentral ideal, then
J is called the complement of I.

Clearly, if J is a complement of I, then J is subcentral and I is a
complement of J. We denote the set of all subcentral ideals of a CPAM 3
by SCI(P).

Proposition 2. Every subcentral ideal has a unique complement.

Proof. Let I be a subcentral ideal. Let J and K be complements of I.
Let x P J. There is a unique pair of elements xI , xK such that x 5 xI % xK ,
where xI P I and xK P K. Similarly, there is a unique pair x I

K, x J
K such that

xK 5 x I
K % x J

K and x I
K P I, x J

K P J. Observe that x J
K P K. It follows that

x 5 (xI % x I
K) % x J

K is a decomposition of x into I and its complement J.
Since J is a complement of I, this decomposition is unique. Evidently,
xI % x I

K 5 0, because x 5 0 % x, 0 P I, x P J. Thus x 5 x J
K P K. Analogously,

x P K implies x P J. n

The above proposition allows us to define a bijective unary operation
8 on SCI(P) such that for I P SCI(P), I 8 is a complement of I. Note that
I 9 5 I and that P, {0} P SCI(P). Moreover, with every I P SCI(P) we can
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associate a unique mapping pI : P . I having the property pI(x) % pI8(x) 5
x, where pI (x) P I and pI8(x) P I 8. Evidently, x P I iff pI(x) 5 x iff pI8(x)
5 0.

Proposition 3. Let I be a subcentral ideal in a CPAM 3:

(a) pI: P . I is a surjective, full homomorphism.
(b) ∀a, b P P: a ,I b iff pI8(a) 5 pI8(b). Consequently, ,I is a

weak congruence.
(c) P/I is isomorphic to I 8.
(d) For every a P P, pI(a) is the greatest element of the set {i P I: i

# a}.

Proof. (a) pI is surjective, because for arbitrary x P I, pI(x) 5 x. Let
x, y P P, x ' y. We have

x % y 5 pI(x % y) % pI8(x % y) (1)

x % y 5 pI(x) % pI8(x) % pI( y) % pI8( y)

5 (pI(x) % pI( y)) % (pI8(x) % pI8( y)) (2)

Both (1) and (2) are decompositions of x % y into I and I 8. Since I is
subcentral, the decomposition of x % y into I and I 8 is unique. Thus, pI (x %
y) 5 pI(x) % pI( y).

Let pI (x) ' pI (y). In order to prove (H2), it suffices to put x1 5 pI (x),
y1 5 pI (y).

(b) Assume a ,I b. Then there are a1, b1 P I such that a * a1 5 b *
b1. This implies b 5 (a * a1) % b1, pI8(b) 5 pI8((a * a1) % b1) 5 pI8(a *
a1). Similarly pI8(a) 5 pI8(b * b1).

Assume pI8(a) 5 pI8(b). Put a1 5 pI (a), b1 5 pI (b). Then (a * a1) 5
pI8(a) 5 pI8(b) 5 (b * b1).

Evidently, the above implies that ,I satisfies (C1). The (C2) condition
follows from the fact that pI8 is a homomorphism.

(c) By part (b), a ,I b iff pI8(a) 5 pI8(b). Let f : P/I . I 8 be a map
defined by f([a]I) 5 pI8(a). Evidently, f is well defined and bijective. Let
[a]I ' [b]I. Then, there are a1 ,I a and b1 ,I b such that a1 ' b1. This
implies that

f([a]I) 5 pI8(a) 5 pI8(a1) ' pI8(b1) 5 pI8(b) 5 f([b]I)

Moreover,

f([a]I % [b]I) 5 f([a1 % b1]I) 5 pI8(a1 % b1)

5 pI8(a1) % pI8(b1) 5 pI8(a) % pI8(b)
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5 f([a]I) % f([b]I)

Let f([a]I) ' f([b]I). That means, pI8(a) ' pI8(b). Since pI8 is full,
there are a1, b1 P P such that pI8(ai) 5 pI8(a), pI8(b1) 5 pI8(b), and a1 ' b1.
Thus, f satisfies the (H2) condition.

(d) Assume i P I, i # a. There is b P P such that a 5 i % b. By part (a),

pI(a) 5 pI (i) % pI (b) 5 i % pI (b)

Therefore, i # pI(a). n

Definition 7. An ideal I P SCI(P) is called central iff a P I, b P I 8
implies a ' b.

As we will prove, the above definition of central ideal is equivalent to
the definition given in ref. 5 for the class of effect algebras. Not every
subcentral ideal is central, as the following example shows.

Example 2. Consider a finite CPAM given by the following table:

% 0 a b c d e

0 0 a b c d e
a a ? d ? ? ?
b b d ? e ? ?
c c ? e ? ? ?
d d ? ? ? ? ?
e e ? ? ? ? ?

In this CPAM, the subcentral ideals are

I1 5 {0} I 81 5 P

I2 5 {0, a} I 82 5 {0, b, c, e}

I3 5 {0, c} I 83 5 {0, a, b, d}

I4 5 {0, b} I 84 5 {0, a, c}

It is easy to see that only I1, I 81, I4, and I 84 are central.

Example 3. Let N be a set of positive integers equipped with the multipli-
cation. Obviously, 1 5 (N, . . . , 1) is a CPAM. Since the operation on N is
total, every subcentral ideal is central. There are nontrivial subcentral ideals
in 1. For example, {2n : n P N ø {0}} is a subcentral ideal with complement
{2n 1 1: n P N ø {0}}.

Definition 8. Let 31, 32 be CPAMs. Let P be a set having the follow-
ing properties:
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(S1) P # P1 3 P2.
(S2) P is an order ideal of 31 3 32.
(S3) ∀x1 P P1: ∃x2 P P2: (x1, x2) P P.
(S4) ∀x2 P P2: ∃x1 P P1: (x1, x2) P P.

Then the relative subalgebra of 31 3 32 associated with P is called a relative
subdirect product of 31, 32.

It follows from Proposition 1 that a relative subdirect product of CPAMs
is a CPAM.

The following two propositions establish a one-to-one correspondence
between (sub)central ideals and (relative sub)direct decompositions of a
CPAM. In particular, this shows that for 3 an effect algebra, our definition
of central ideal of 3 is equivalent with the definition given in ref. 5.

Proposition 4. Let 3 be a relative subdirect product of 31 and 32. Then
I 5 {(x1, 0): x1 P P1} is a subcentral ideal of 3 and J 5 {(0, x2): x2 P P2}
is the complement of I. Moreover, 3 5 31 3 32 implies I is central.

Proof. First of all, let us prove I, J # P. Let (x1, 0) P I. By (S3), there
is x2 P P2 such that (x1, x2) P P. Now, (x1, x2) 5 (x1, 0) % (0, x2) in 31 3
32. It follows that (x1, 0) P P, since P is an order ideal of 31 3 32. One
can prove J # P in a similar way.

It is easy to check that both I and J are ideals of P. It remains to prove
that I is subcentral ideal.

Let (x1, x2) P P. Then (x1, x2) 5 (x1, 0) %P (0, x2), where (x1, 0) P I
and (0, x2) P J. This decomposition is unique. Indeed, let (x1, x2) 5 ( y1, y2)
%P (z1, z2), ( y1, y2) P I, (z1, z2) P J. Clearly, y2 5 z1 5 0. Now, (x1, x2) 5
( y1, 0) %P (0, z2), which implies x1 5 y1 and x2 5 z2.

Suppose 3 5 31 3 32. Obviously, for all x1 P P1 and x2 P P2, (x1, 0)
' (0, x2) holds. Thus I is central. n

Proposition 5. Let I be a subcentral ideal of a CPAM 3. Then 3 is
isomorphic to a relative subdirect product of I and I 8. Moreover, if I is central,
then P is isomorphic to I 3 I 8.

Proof. We denote Q 5 I 3 I 8 and %Q the operation on Q. Let A 5
{(x1, x2): x1 P I, x2 P I 8, x1 ' x2}, and let ! 5 (A, %A , 0) be a relative
subalgebra of Q associated with A.

(S1) holds by definition of A. For a proof of (S2), let (x1, x2) P A, ( y1,
y2) #Q (x1, x2). Evidently, y1 #P x1 and y2 #P x2. Thus, x1 ' x2 implies y1 '
y2, i.e., ( y1, y2) P A. Since x1 P I implies (x1, 0) P A, (S3) holds. The proof
of (S4) is similar. Thus, ! is a relative subdirect product of I and I 8. It
remains to prove that ! is isomorphic to 3.
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Let w: P ° A be defined by w(x) 5 (pI (x), pI8(x)). We will prove that
w is an isomorphism. For a proof of injectivity, assume w(x) 5 w( y). That
means (pI (x), pI8(x)) 5 (pI (y), pI8( y)). It follows that x 5 pI (x) % pI8(x) 5
pI (y) % pI8( y) 5 y. To prove surjectivity, observe that for (x1, x2) P A, w(x1 %
x2) 5 (x1, x2). (H1) follows from the fact that pI and pI8 are homomorphisms.

Let w(x) 5 (pI (x), pI8(x)) 'A w( y) 5 (pI (y), pI8(y)). Since w(x), w( y)
are orthogonal in !, their sum must be an element of A: (pI (x) % pI (y),
pI8(x) % pI8( y)) P A. Therefore, (pI (x) % pI (y)) 'P (pI8(x) % pI8( y)), which
implies x 5 pI (x) % pI8(x) 'P pI (y) % pI8( y) 5 y.

Suppose I is central. Then A 5 Q. The rest is obvious. n

4. SUBCENTRAL IDEALS IN SOME IDEAL LATTICES

In this section, we investigate the role of subcentral ideals in the lattice
of R1-ideals, recently introduced in ref. 1. We prove that (SCI(P), #) is a
Boolean lattice which is the center of the lattice of R1-ideals. Moreover, every
subcentral ideal is a central element of the lattice I(P) of all ideals. A subcentral
ideal is central iff it is a Riesz ideal.

Definition 9. Let 3 be a CPAM, I P I(P). I is called a R1-ideal iff for
every i P I and a, b P P such that a ' b, i # a % b, there are i1, i2 P I
such that i1 # a, i2 # b, i # i1 % i2. An R1 ideal I is called a Riesz ideal iff
for every i P I, a, b P P, i # a, and a * i ' b there exists j P I such that
j # b and a ' b * j.

We denote R1 I(P) the set of all R1-ideals of a CPAM 3. The following
proposition summarizes some of the results from ref. 1.

Proposition 6. Let 3 be a CPAM.

(a) Let I P R1I(P), J P I(P). I ∨ J 5 I % J 5 {i % j : i P I, j P J,
i ' j}.

(b) R1I(P) is a complete distributive sublattice of I(P).
(c) If (P, #) is upper-directed, then every R1-ideal is a Riesz ideal.
(d) If I is an R1-ideal, then ,I satisfies (C1), (C2), and (C5). Conse-

quently, P/I is a PAM.

Recall that for a bounded lattice L, an element z P L is called central
iff there is a z8 P L such that L is isomorphic to [0, z] 3 [0, z8]. The set of
all central elements of a lattice L [denoted by C(L)] forms a Boolean sublattice
of L.

Proposition 7. Let 3 be a CPAM. Then SCI(P) 5 C(R1I(P)).

Proof. Let I P SCI(P), i P I, i # a % b. Then pI (i) # pI (a) % pI (b),
pI (a) # a, pI (b) # b, showing that I P R1I(P).
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By ref. 9, Theorem 4.13, an element of a distributive lattice is central
iff it has a complement. For I P SCI(P), I ∨ I 8 5 I % I 8 5 P and I ∧ I 8 5
{0}. Therefore, SCI(P) # C(R1I(P)).

For the opposite direction, let I P C(R1I(P)). Then I has a complement
I 8, i.e., P 5 I % I 8, I ∧ I 8 5 {0}. Evidently, every x P P has a decomposition
x 5 xI % xI8, xI P I, xI8 P I 8. It remains to prove that this decomposition
is unique.

Let us denote pI(x) 5 {xI, xI P I, xI # x, x * xI P I 8}. A decomposition
of x into I and I 8 exists; therefore pI (x) is not empty. Let i P pI (a % b).
Then i # a % b and since I is an R1-ideal, there are i1, i2 P I such that i #
i1 % i2, i1 # a, i2 # b, i # i1 % i2. Denote c 5 (i1 % i2) * i, a1 5 a * i1,
b1 5 b * i2. Note that c P I and a % b 5 i1 % a1 % i2 % b1 5 i % c %
a1 % b1. The later equation implies (a % b) * i 5 c % a1 % b1 P I 8 because
i P pI(a % b). It follows, c P I ù I 8 5 {0}, a1 P I 8, b1 P I 8. Thus, i1 P
pI (a), i2 P pI (b), i 5 i1 % i2, pI (a % b) # pI (a) % pI (b).

Now let x 5 xI % xI8, xI P I, xI8 P I 8. pI (x) # pI (xI) % pI (xI8). Observe
that pI (xI8) # I ù I 8 5 {0} and pI (xI) 5 {xI}. This, together with pI (x) Þ
0⁄ , implies pI (x) 5 {xI}. Similarly, p I8I (x) 5 {xI8}. The decomposition of x
into I, I 8 exists and is unique, I P SCI(P). n

Corollary 1. SCI(P) is a Boolean sublattice of I(P).

Proposition 8. Let I, J P SCI(P), x P P.
(a) pI∧J(x) 5 pJ (pI (x))
(b) pI∨J(x) 5 pJ (pI8(x)) % pI (x)

Proof. (a) (I ∧ J )8 5 I 8 ∨ J 8, since SCI(P) is a Boolean algebra. Now,
x 5 pI (x) % pI8(x) 5 pJ (pI (x)) % pJ8(pI (x)) % pI8(x) is a decomposition
of x into I ∧ J { pJ (pI (x)) and I 8 ∨ J 8 { pJ8(pI (x)) % pI8(x). This implies
pI∧J (x) 5 pI (pJ (x)).

(b) Similarly. n

Corollary 2. Let I, J P SCI(P). Then pI + pJ 5 pJ + pI.

Proof. Let x P P. Then pI (pJ (x)) 5 pI∧J (x) 5 pJ∧I (x) 5 pJ (pI (x)). n

Proposition 9. Let 3 be a CPAM. Then SCI(P) # C(I(P)).

Proof. Let J P I(P), I P SCI(P). According to ref. 9, Theorem 4.13, it
is sufficient to prove

J 5 (J ∧ I ) ∨ (J ∧ I 8) 5 (J ∨ I ) ∧ (J ∨ I 8)

(1) J 5 (J ∧ I ) ∨ (J ∧ I 8).
By Proposition 3 of ref. 1, I, I 8 P R1I(P) implies that (J ∧ I ) ∨
(J ∧ I 8) 5 J ∧ (I ∨ I 8) 5 J.
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(2) J 5 (J ∨ I ) ∧ (J ∨ I 8).
J # (J ∨ I ) ∧ (J ∨ I 8) is trivial. By ref. 1, Proposition 2, I P R1

I(P) and K P I(P) implies I ∨ K 5 I % K. Consequently,

(J ∨ I ) ∧ (J ∨ I 8) 5 (J % I ) ∧ (J % I 8)

Let a P (J % I ) ∧ (J % I 8). We have a P J % I and so there are
j P J and i P I such that a 5 j % i. Then

pI8(a) 5 pI8( j ) % pI8(i) 5 pI8( j ) % 0 # j P J

so pI8(a) 5 pI8( j ) P J. Similarly, a P J % I8 implies pI(a) P J.
Since pI (a) P J and pI8(a) P J, a 5 pI(a) % pI8(a) P J. n

The following proposition gives a characterization of central ideals.

Proposition 10. Let 3 be a CPAM, let I P SCI(P). I is central iff I is
a Riesz ideal.

Proof. Let I be a Riesz, subcentral ideal. Let a P I, b P I 8. Consider
the definition of a Riesz ideal. Put i 5 a. Evidently i # a and a * i 5 0 '
b. This implies that there is j P I, j # b, such that b * j ' a. Now, j #
b P I 8 implies that j P I 8. Consequently, j P I ∧ I8 5 {0}. Therefore j 5
0 and b * j 5 b ' a.

The opposite implication follows from Example 7 in ref. 6, using the
results of the previous section. However, we present a direct proof here.

Let I be a central ideal. Assume a $ i P I, a * i ' b. Since I is central,
pI (a) ' pI8((a * i) % b). We have

pI (a) % pI8((a * i) % b) 5 pI (a) % pI8(a * i) % pI8(b)

5 pI (a) % (pI8(a) * pI8(i)) % pI8(b)

5 pI (a) % pI8(a) % pI8(b) 5 a % pI8(b)

Thus, a ' pI8(b) 5 b * pI (b) and, putting j 5 pI (b), we see that a ' b * j. n

Corollary 3. Let 3 be an upper-directed CPAM (in particular, an effect
algebra). Then every subcentral ideal is central.

Proof. By ref. 1, Proposition 9, in an upper-directed CPAM every R1-
ideal is Riesz. n
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